1.Poor HD. Pulmonary Thrombosis and Thromboembolism in COVID-19. Chest. 2021 Jun 18:S0012-3692(21)01126-0. doi: 10.1016/j.chest.2021.06.016. Epub ahead of print. PMID: 34153340.
CrossRefPubMedGoogle Scholar2.de Roquetaillade C, Mansouri S, Brumpt C, Neuwirth M, Voicu S, Le Dorze M, Fontaine C, Barthelemy R, Gayat E, Megarbane B, Mebazaa A, Chousterman BG. Comparison of Circulating Immune Cells Profiles and Kinetics Between Coronavirus Disease 2019 and Bacterial Sepsis. Crit Care Med. 2021 May 18. doi: 10.1097/CCM.0000000000005088. Epub ahead of print. PMID: 34001691.
CrossRefPubMedGoogle Scholar3.Lange A, Lange J, Jaskuła E. Cytokine Overproduction and Immune System Dysregulation in alloHSCT and COVID-19 Patients. Front Immunol. 2021 Jun 2;12:658896. doi: 10.3389/fimmu.2021.658896. PMID: 34149697; PMCID: PMC8206782.
CrossRefPubMedGoogle Scholar4.Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, Pott F, Debnath O, Thürmann L, Kurth F, Völker MT, Kazmierski J, Timmermann B, Twardziok S, Schneider S, Machleidt F, Müller-Redetzky H, Maier M, Krannich A, Schmidt S, Balzer F, Liebig J, Loske J, Suttorp N, Eils J, Ishaque N, Liebert UG, von Kalle C, Hocke A, Witzenrath M, Goffinet C, Drosten C, Laudi S, Lehmann I, Conrad C, Sander LE, Eils R. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat Biotechnol. 2020 Aug;38(8):970–979. doi: 10.1038/s41587-020-0602-4. Epub 2020 Jun 26. PMID: 32591762.
CrossRefPubMedGoogle Scholar5.Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Front Immunol. 2020 Apr 28;11:761. doi: 10.3389/fimmu.2020.00761. eCollection 2020.
CrossRefGoogle Scholar6.Leyva-Grado VH, Ermler ME, Schotsaert M, Gonzalez MG, Gillespie V, Lim JK, GarcÍa-Sastre A. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection. mBio. 2017 Mar 28;8(2):e00229–17. doi: 10.1128/mBio.00229-17.
CrossRefGoogle Scholar7.Riteau N, Gasse P, Fauconnier L, Gombault A, Couegnat M, Fick L, Kanellopoulos J, Quesniaux VF, Marchand-Adam S, Crestani B, Ryffel B, Couillin I. Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. Am J Respir Crit Care Med. 2010 Sep 15;182(6):774–83. doi: 10.1164/rccm.201003-0359OC. Epub 2010.
CrossRefPubMedWeb of ScienceGoogle Scholar8.Di Virgilio F, Tang Y, Sarti AC, Rossato M. A rationale for targeting the P2X7 receptor in Coronavirus disease 19. Br J Pharmacol. 2020 Nov;177(21):4990–4994. doi: 10.1111/bph.15138. Epub 2020 Jul 26.
CrossRefGoogle Scholar9.Chiao CW, Tostes RC, Webb RC. P2X7 receptor activation amplifies lipopolysaccharide-induced vascular hyporeactivity via interleukin-1 beta release. J Pharmacol Exp Ther. 2008 Sep;326(3):864–70. doi: 10.1124/jpet.107.135350. Epub 2008 Jun 16.
Abstract/FREE Full TextGoogle Scholar10.Sato Y, Chibana K, Horigane Y, Uchida N, Masawa M, Koike R, Nakamura Y, Watanabe T, Shiobara T, Arai R, Shimizu Y, Takemasa A, Ishii Y. Comparison of inducible nitric oxide synthase mRNA expression in different airway portions and association with nitric oxide parameters from patients with asthma. Clin Exp Allergy. 2019 May;49(5):582–590. doi: 10.1111/cea.13344. Epub 2019 Feb 15.
CrossRefGoogle Scholar11.Venosa A, Gow JG, Taylor S, Golden TN, Murray A, Abramova E, Malaviya R, Laskin DL, Gow AJ. Myeloid cell dynamics in bleomycin-induced pulmonary injury in mice; effects of anti-TNFalpha antibody. Toxicol Appl Pharmacol. 2021 Apr 15;417:115470. doi: 10.1016/j.taap.2021.115470. Epub 2021 Feb 27.
CrossRefGoogle Scholar12.Ramos DS, Olivo CR, Quirino Santos Lopes FD, Toledo AC, Martins MA, Lazo Osório RA, Dolhnikoff M, Ribeiro W, Vieira RP. Low-intensity swimming training partially inhibits lipopolysaccharide-induced acute lung injury.Med Sci Sports Exerc. 2010 Jan;42(1):113–9. doi: 10.1249/MSS.0b013e3181ad1c72.
CrossRefPubMedGoogle Scholar13.Chen Y, Zhou R, Yi Z, Li Y, Fu Y, Zhang Y, Li P, Li X, Pan Y. Porphyromonas gingivalis induced inflammatory responses and promoted apoptosis in lung epithelial cells infected with H1N1 via the Bcl-2/Bax/Caspase-3 signaling pathway. Mol Med Rep. 2018 Jul;18(1):97–104. doi: 10.3892/mmr.2018.8983. Epub 2018 May 7.
CrossRefGoogle Scholar14.Vieira RP, Müller T, Grimm M, von Gernler V, Vetter B, Dürk T, Cicko S, Ayata CK, Sorichter S, Robaye B, Zeiser R, Ferrari D, Kirschbaum A, Zissel G, Virchow JC, Boeynaems JM, Idzko M. Purinergic receptor type 6 contributes to airway inflammation and remodeling in experimental allergic airway inflammation. Am J Respir Crit Care Med. 2011 Jul 15;184(2):215–23. doi: 10.1164/rccm.201011-1762OC. Epub 2011 Apr 21.
CrossRefPubMedGoogle Scholar15.Caraccio N, Monzani F, Santini E, Cuccato S, Ferrari D, Callegari MG, Gulinelli S, Pizzirani C, Di Virgilio F, Ferrannini E, Solini A. Extracellular adenosine 5’-triphosphate modulates interleukin-6 production by human thyrocytes through functional purinergic P2 receptors. Endocrinology. 2005 Jul;146(7):3172–8. doi: 10.1210/en.2004-1527. Epub 2005 Mar 24.
CrossRefPubMedWeb of ScienceGoogle Scholar16.Oliveira CR, Vieira RP. Anti-Inflammatory Activity of Miodesin™: Modulation of Inflammatory Markers and Epigenetic Evidence. Oxid Med Cell Longev. 2020 May 15;2020:6874260. doi: 10.1155/2020/6874260. eCollection 2020.
CrossRefGoogle Scholar17.Garcia M, Santos-Dias A, Bachi ALL, Oliveira-Junior MC, Andrade-Souza AS, Ferreira SC, Aquino-Junior JCJ, Almeida FM, Rigonato-Oliveira NC, Oliveira APL, Savio LEB, Coutinho-Silva R, Müller T, Idzko M, Siepmann T, Vieira RP. Creatine supplementation impairs airway inflammation in an experimental model of asthma involving P2X7 receptor. Eur J Immunol. 2019 Jun;49(6):928–939. doi: 10.1002/eji.201847657. Epub 2019 Apr 18.
CrossRefGoogle Scholar18.Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0. Epub 2020 Mar 16.
CrossRefPubMedGoogle Scholar19.Monteagudo LA, Boothby A, Gertner E. Continuous Intravenous Anakinra Infusion to Calm the Cytokine Storm in Macrophage Activation Syndrome. ACR Open Rheumatol. 2020 May;2(5):276–282. doi: 10.1002/acr2.11135. Epub 2020 Apr 21.
CrossRefGoogle Scholar20.Ullah MA, Rittchen S, Li J, Hasnain SZ, Phipps S. DP1 prostanoid receptor activation increases the severity of an acute lower respiratory viral infection in mice via TNF-α-induced immunopathology. Mucosal Immunol. 2021 Apr 20:1– 10. doi: 10.1038/s41385-021-00405-7. Epub ahead of print. PMID: 33879829; PMCID: PMC8057290.
CrossRefPubMedGoogle Scholar21.Stravinskas Durigon T, MacKenzie B, Carneiro Oliveira-Junior M, Santos-Dias A, De Angelis K, Malfitano C, Kelly da Palma R, Moreno Guerra J, Damaceno-Rodrigues NR, Garcia Caldini E, de Almeida FM, Aquino-Santos HC, Rigonato-Oliveira NC, Leal de Oliveira DB, Aimbire F, Ligeiro de Oliveira AP, Franco de Oliveira LV, Durigon EL, Hiemstra PS, Vieira RP. Aerobic Exercise Protects from Pseudomonas aeruginosa-Induced Pneumonia in Elderly Mice. J Innate Immun. 2018;10(4):279–290. doi: 10.1159/000488953. Epub 2018 May 29.
CrossRefPubMedGoogle Scholar22.Postlethwaite AE, Raghow R, Stricklin GP, Poppleton H, Seyer JM, Kang AH. Modulation of fibroblast functions by interleukin 1: increased steady-state accumulation of type I procollagen messenger RNAs and stimulation of other functions but not chemotaxis by human recombinant interleukin 1 alpha and beta. J Cell Biol. 1988 Feb;106(2):311–8. doi: 10.1083/jcb.106.2.311.
Abstract/FREE Full TextGoogle Scholar23.Kähäri VM, Heino J, Vuorio E. Interleukin-1 increases collagen production and mRNA levels in cultured skin fibroblasts. Biochim Biophys Acta. 1987 Jul 6;929(2):142–7. doi: 10.1016/0167-4889(87)90169-8.
CrossRefPubMedGoogle Scholar24.Ambardar SR, Hightower SL, Huprikar NA, Chung KK, Singhal A, Collen JF. Post-COVID-19 Pulmonary Fibrosis: Novel Sequelae of the Current Pandemic. J Clin Med. 2021 Jun 1;10(11):2452. doi: 10.3390/jcm10112452.
CrossRefGoogle Scholar25.Guimarães LMF, Rossini CVT, Lameu C. Implications of SARS-Cov-2 infection on eNOS and iNOS activity: Consequences for the respiratory and vascular systems. Nitric Oxide. 2021 Jun 1;111-112:64–71. doi: 10.1016/j.niox.2021.04.003. Epub 2021 Apr 6.
CrossRefGoogle Scholar26.Xu W, Zheng S, Dweik RA, Erzurum SC. Role of epithelial nitric oxide in airway viral infection. Free Radic Biol Med. 2006 Jul 1;41(1):19–28. doi: 10.1016/j.freeradbiomed.2006.01.037. Epub 2006 Feb 20.
CrossRefPubMedGoogle Scholar27.Kobayashi A, Hashimoto S, Kooguchi K, Kitamura Y, Onodera H, Urata Y, Ashihara T. Expression of inducible nitric oxide synthase and inflammatory cytokines in alveolar macrophages of ARDS following sepsis. Chest. 1998 Jun;113(6):1632–9. doi: 10.1378/chest.113.6.1632.
CrossRefPubMedWeb of ScienceGoogle Scholar28.Saghir SAM, Al-Gabri NA, Khafaga AF, El-Shaer NH, Alhumaidh KA, Elsadek MF, Ahmed BM, Alkhawtani DM, Abd El-Hack ME. Thymoquinone-PLGA-PVA Nanoparticles Ameliorate Bleomycin-Induced Pulmonary Fibrosis in Rats via Regulation of Inflammatory Cytokines and iNOS Signaling. Animals (Basel). 2019 Nov 11;9(11):951. doi: 10.3390/ani9110951.
CrossRefGoogle Scholar29.Cinar R, Iyer MR, Kunos G. Dual inhibition of CB(1) receptors and iNOS, as a potential novel approach to the pharmacological management of acute and long COVID-19. Br J Pharmacol. 2021 Mar 26:10.1111/bph.15461. doi: 10.1111/bph.15461. Online ahead of print.
CrossRefGoogle Scholar30.van de Veerdonk FL, Netea MG. Blocking IL-1 to prevent respiratory failure in COVID-19. Crit Care. 2020 Jul 18;24(1):445. doi: 10.1186/s13054-020-03166-0.
CrossRefGoogle Scholar31.Franzetti M, Forastieri A, Borsa N, Pandolfo A, Molteni C, Borghesi L, Pontiggia S, Evasi G, Guiotto L, Erba M, Pozzetti U, Ronchetti A, Valsecchi L, Castaldo G, Longoni E, Colombo D, Soncini M, Crespi S, Maggiolini S, Guzzon D, Piconi S. IL-1 Receptor Antagonist Anakinra in the Treatment of COVID-19 Acute Respiratory Distress Syndrome: A Retrospective, Observational Study. J Immunol. 2021 Apr 1;206(7):1569–1575. doi: 10.4049/jimmunol.2001126. Epub 2021 Feb 5.
Abstract/FREE Full TextGoogle Scholar32.Franzetti M, Pozzetti U, Carugati M, Pandolfo A, Molteni C, Faccioli P, Castaldo G, Longoni E, Ormas V, Iemoli E, Piconi S. Interleukin-1 receptor antagonist anakinra in association with remdesivir in severe COVID-19: A case report. Int J Infect Dis. 2020 Aug;97:215-218. doi: 10.1016/j.ijid.2020.05.050. Epub 2020 May 16.
CrossRefPubMedGoogle Scholar33.Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, Oltolini C, Castiglioni B, Tassan Din C, Boffini N, Tomelleri A, Farina N, Ruggeri A, Rovere-Querini P, Di Lucca G, Martinenghi S, Scotti R, Tresoldi M, Ciceri F, Landoni G, Zangrillo A, Scarpellini P, Dagna L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020 Jun;2(6):e325–e331. doi: 10.1016/S2665-9913(20)30127-2. Epub 2020 May 7.
CrossRefGoogle Scholar